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If there are more than two regions which are approached by an odd
number of bridges, no route satisfying the required conditions can be
found.
If, however, there are only two regions with an odd number of
ap_;u.'oach bridges the required journey can be completed provided it
originates in one of the regions.
If, finally, there is no region with an odd number of approach
bridges, the required journey can be effected, no matter where it begins
These rules solve completely the problem initially proposed. .

.21. After we have determined that a route' actually exists we are left
with the question how to find it. To this end the following rule will serve:
Wherever possible we mentally eliminate any two bridges that connec;
the same two regions; this usually reduced the number of bridges consid-
erabl.y. Then—and this should not be difficult—we proceed to trace the
required route across the remaining bridges. The pattern of this route
once we have found it, will not be substantially affected by the restoratior;
of the bridges which were first eliminated from consideration—as a little

thought will show; therefore I do not think I need say more about finding
the routes themselves.

I must go in and out. —BERNARD SHAW (Heartbreak House)

5 Topology

By RICHARD COURANT
and HERBERT ROBBINS

EULER'S FORMULA FOR POLYHEDRA

ALTHOUGH the study of polyhedra held a central place in Greek geom-
etry, it remained for Descartes and Euler to discover the following fact:
In a simple polyhedron let V' denote the number of vertices, E the number
of edges, and F the number of faces; then always

(1) V—E+F=2.

By a polyhedron is meant a solid whose surface consists of a number of
polygonal faces. In the case of the regular solids, all the polygons are
congruent and all the angles at vertices are equal. A polyhedron is simple
if there are no “holes” in it, so that its surface can be deformed continu-
ously into the surface of a sphere. Figure 2 shows a simple polyhedron
which is not regular, while Figure 3 shows a polyhedron which is not
simple. .

The reader should check the fact that Euler’s formula holds for the
simple polyhedra of Figures 1 and 2, but does not hold for the polyhedron
of Figure 3. ‘

To prove Euler’s formula, let us imagine the given simple polyhedron
to be hollow, with a surface made of thin rubber. Then if we cut out
one of the faces of the hollow polyhedron, we can deform the remaining
surface until it stretches out flat on a plane. Of course, the areas of the
faces and the angles between the edges of the polyhedron will have
changed in this process. But the network of vertices and edges in the
plane will contain the same number of vertices and edges as did the
original polyhedron, while the number of polygons will be one less than
in the original polyhedron, since one face was removed. We shall now
show that for the plane network, V — E + F = 1, so that, if the removed
face is counted, the result is ¥ — E + F = 2 for the original polyhedron.

First we “triangulate” the plane network in the following way: In
some polygon of the network which is not already a triangle we draw a
diagonal. The effect of this is to increase both E and F by 1, thus pre-
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FIGURE 1—The regular polyhedra.
serving the value of V — E + F. We continue drawing diagonals joining
pairs of points (Figure 4) until the figure consists entirely of triangles, as
it must eventually, In the triangulated network, ¥ — E + F has the value
that it had before the division into triangles, since the drawing of diag-
onals has not changed it. Some of the triangles have edges on the bound-
ary of the plane network. Of these some, such as ABC, have only one
edge on-the boundary, while other triangles may have two edges on the
boundary. We take any boundary triangle and remove that part of it
which does not also belong to some other triangle. Thus, from ABC we
remove the edge AC and the face, leaving the vertices A, B, C and the
two edges AB and BC; while from DEF we remove the face, the two
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FIGURE 2—A simple polyhedron, ¥V — E+ F=9 — 18 + 11 = 2.

FIGURE 3—A non-simple polyhedron, V — E 4+ F =16 — 124+ 16=0.

edges DF and FE, and the vertex F. The removal of a triangle 0:5 Lip;
ABC decreases E and F by 1, while V is unaffected, so that V- ks
remains the same. The removal of a triangle of type DFF decreases d :
1, Eby 2, and F by 1, so that V — E + F.again remains the san::i.an;es
properly chosen sequence of these operations v.ve can remo::an o
with edges on the boundary (which changes with each ren:,enicc’s .
finally only one triangle remains, with its three edges, three e B‘;t o
one face. For this simple network, V —E+ F=3— 3+1=1
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FIGURE 4—Proof of Euler's theorem.

have seen that by constantly erasing triangles ¥ — E + F was not altered.
Therefore in the original plane network V — E + F must equal 1 also,
and thus equals 1 for the polyhedron with one face missing. We conclude

that V —E+ F =2 for the complete polyhedron. This completes the
proof of Euler’s formula.

On the basis of Euler’s formula it is easy to show that th
ere are no
more than five regular polyhedra. For suppose that a regular polyhedron
has F faces, each of which is an n-sided regular polygon, and that r edges
meet at each vertex. Counting edges by faces and vertices, we see that

2) ‘nF = 2F;

for each edge belongs to two faces, and h i ice i
: ence is counted twic
product nF; moreover, e

3) rV = 2E,
since each edge has two vertices. Hence from (1) we obtain the equation
2E 2E
—+——E=2
n r
or
Ly de 51l
(4) —4o=_4-
n iy RANE

We know to begin with that n > and r > 3, since a polygon must have at

least three sides, and at least three sides must meet at e
A ach polyhedral
angle. But n and r cannot both be greater than three, for then lyhe left
hand side of equation (4) could not exceed 4, which is impossible for
any positive value of E. Therefore, let us see what values r may have
;-(:;l;leré: 3, andbwh]iu values n may have when r = 3. The totality of
given by these two ca i i
e - y ses gives the number of possible regular
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For n = 3, equation (4) becomes
1 1 1

r 6 E
r can thus equal 3, 4, or 5. (6, or any greater number, is obviously
excluded, since 1/E is always positive.) For these values of n and r we

get E=6, 12, or 30, corresponding respectively to the tetrahedron, octa-
hedron, and icosahedron. Likewise, for r = 3 we obtain the equation

1 1 1

n6E’

from which it follows that n =3, 4, or 5, and E = 6, 12, or 30, respec-
tively. These values correspond respectively to the tetrahgdron, cpbe, and
dodecahedron. Substituting these values for n, r, and E in equations (2)
and (3), we obtain the numbers of vertices and faces in the corresponding
polyhedra.

TOPOLOGICAL PROPERTIES OF FIGURES
TOPOLOGICAL PROPERTIES

We have proved that the Euler formula holds for any simple polyhe-
dron. But the range of validity of this formula goes far beyond the
polyhedra of elementary geometry, with their flat faces and straight edges;
the proof just given would apply equally well to a simple polyhedron
with curved faces and edges, or to any subdivision of the surface of a
sphere into regions bounded by curved arcs. Moreover, if we imagine the
surface of the polyhedron or of the sphere to be made out of a thin sheet
of rubber, the Euler formula will still hold if the surface is deformed by
bending and stretching the rubber into any other shape, so long as the
rubber is not torn in the process. For the formula is concerned only with
the numbers of the vertices, edges, and faces, and not with lengths, areas,
straightness, cross-ratios, or any of the usual concepts of elementary or
projective geometry.

We recall that elementary geometry deals with the magnitudes (length,
angle, and area) that are unchanged by the rigid motions, while projective
geometry deals with the concepts (point, line, incidence, and cross-ratio)
which are unchanged by the still larger group of projective transforma-
tions. But the rigid motions and the projections are both very special cases
of what are called topological transformations: a topological transforma-

tion of one geometrical figure 4 into another figure A’ is given by any
correspondence

p<—>p

between the points p of A and the points p’ of A” which has the following

two properties:
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1. The correspondence is biunique. This means that to each point p of
A corresponds just one point p’ of 4’, and conversely.

2. The correspondence is continuous in both directions. This means
that if we take any two points p, ¢ of 4 and move p so that the distance
between it and g approaches zero, then the distance between the corre-
sponding points p’, ¢’ of A” will also approach zero, and conversely.

Any property of a geometrical figure A4 that holds as well for every
figure into which 4 may be transformed by a topological transformation
is called a ropological property of A, and topology is the branch of geom-
etry which deals only with the topological properties of figures. Imagine
a figure to be copied “free-hand” by a conscientious but inexpert
draftsman who makes straight lines curved and alters angles, distances
and areas; then, although the metric and projective properties of the
original figure would be lost, its topological properties would remain the
same.

The most intuitive examples of general topological transformations are
the deformations. Imagine a figure such as a sphere or a triangle to be
made from or drawn upon a thin sheet of rubber, which is then stretched
and twisted in any manner without tearing it and without bringing distinct
points into actual coincidence. (Bringing distinct points into coincidence
would violate condition 1. Tearing the sheet of rubber would violate con-
dition 2, since two points of the original figure which tend toward coin-
cidence from opposite sides of a line along which the sheet is torn would

not tend towards coincidence in the torn figure.) The final position of
the figure will then be a topological image of the original. A triangle can
be deformed into any other triangle or into a circle or an ellipse, and
hence these figures have exactly the same topological properties. But one

FIGURE 6—Topologically non-equivalent surfaces.
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cannot deform a circle into a line segment, nor the surface of a sphere
into the surface of an inner tube. o

The general concept of 1opological'transform-auon is \T.':_der than the
concept of deformation. For example, if a figure is cut during a def.orm?-
tion and the edges of the cut sewn together afler the deformalmn. in
exactly the same way as before, the process st_nll.deﬁnes a topolog‘lcal
transformation of the original figure, although lll is not .a deformatlor;
Thus the two curves of Figure 121 are topologu:.ally equivalent to eac
other or to a circle, since they may be cut, -umwnsted. and ﬂ.ae cut s.ewln
up. But it is impossible to deform one curve into the other or into a circle

i utting the curve.
qu']z:;]g;si::; proserties of figures (sn-ach as are given by Eule_r‘s the:)ren;
and others to be discussed in this SEC(IOI’l‘) ar_e of the greales-t interes at;llle
importance in many mathematical invesuganon.s. They are.m a .sensethe
deepest and most fundamental of all geometrical properties, since they
persist under the most drastic changes of shape.

CONNECTIVITY

As another example of two figures that are not topologically equivalf’.nt
we may consider the plane domains of Figure 7. The first of these consists

b
FIGURE 7—Simple and double connectivity.

of all points interior to a circle, while the second consists of .all Po:r;:s
contained between two concentric circles. Any closed curve lying i the
domain a can be continuously deformed or “shrunk‘j do?vn to a smgle
point within the domain.' A domain with this property 1s said to be sufxply
connected. The domain b is not simply connected. For example, a circle
concentric with the two boundary circles and midway beTween thf:m car_l-
not be shrunk to a single point within the domain, since dunng this
process the curve would necessarily pass over the.cenlter of t.he circles,
which is not a point of the domain. A domain wh}ch is not simply COI:I-
nected is said to be multiply connected. 1f the multiply connected domain

! [See p. 592, ED.]

.I



- Richard Courant and Herbert Robbins

FIGURE 8—Cutting a doubly connected domain to make it simply connected.
b is cut along a radius, as in Figure 8, the resulting domain is simply
connected.
More generally, we can construct domains with two, three, or more
“holes,” such as the domain of Figure 9. In order to convert this domain
into a simply connected domain, two cuts are necessary. If n — 1 non-

FIGURE $—Reduction of a triply connected domain.

intersecting cuts from boundary to boundary are needed to convert a given
rmfltiply connected domain D into a simply connected domain, the domain
P is said to be n-tuply connected. The degree of connectivity of a domain
in the plane is an important topological invariant of the domain.

OTHER EXAMPLES OF TOPOLOGICAL THEOREMS
THE JORDAN CURVE THEOREM

. A simple closed curve (one that does not intersect itself) is drawn
in the plane. What property of this figure persists even if the plane is
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regarded as a sheet of rubber that can be deformed in any way? The
length of the curve and the area that it encloses can be changed by a
deformation. But there is a topological property of the configuration
which is so simple that it may seem trivial: A simple closed curve C in
the plane divides the plane into exactly two domains, an inside and an
outside. By this is meant that the points of the plane fall into two classes—
A, the outside of the curve, and B, the inside—such that any pair of points
of the same class can be joined by a curve which does not cross C, while
any curve joining a pair of points belonging to different classes must cross
C. This statement is obviously true for a circle or an ellipse, but the self-
evidence fades a little if one contemplates a complicated curve like the

twisted polygon in Figure 10.

FIGURE 10—Which points of the plane are inside this polygon?

This theorem was first stated by Camille Jordan (1838-1922) in his
famous Cours d’Analyse, from which a whole generation of mathemati-
cians learned the modern concept of rigor in analysis. Strangely enough,
the proof given by Jordan was neither short nor simple, and the surprise
was even greater when it turned out that Jordan’s proof was invalid and
that considerable effort was necessary to fill the gaps in his reasoning. The
first rigorous proofs of the theorem were quite complicated and hard to
understand, even for many well-trained mathematicians. Only recently
have comparatively simple proofs been found. One reason for the difficulty
lies in the generality of the concept of “simple closed curve,” which is
not restricted to the class of polygons or “smooth” curves, but includes
all curves which are topological images of a circle. On the other hand,
many concepts such as “inside,” “outside,” etc., which are so clear to the
intuition, must be made precise before a rigorous proof is possible. It is
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of the highest theoretical importance to analyze such concepts in their
fullest generality, and much of modern topology is devoted to this task,
But one should never forget that in the great majority of cases that arise
from the study of concrete geometrical phenomena it is quite beside the
point to work with concepts whose extreme generality creates unnecessary
difficulties. As a matter of fact, the Jordan curve theorem is quite simple
to prove for the reasonably well-behaved curves, such as polygons or
curves with continuously turning tangents, which occur in most important
problems.

THE FOUR COLOR PROBLEM

From the example of the Jordan curve theorem one might suppose that
topology is concerned with providing rigorous proofs for the sort of obvi-
ous assertions that no sane person would doubt. On the contrary, there
are many topological questions, some of them quite simple in form, to
which the intuition gives no satisfactory answer. An example of this kind
is the renowned “four color problem.”

FIGURE 11—Coloring a map.

In coloring a geographical map it is customary to give different colors
to any two countries that have a portion of their boundary in common.
It has been found empirically that any map, no matter how many countries
it contains nor how they are situated, can be so colored by using only four
different colors. It is easy to see that no smaller number of colors will
suffice for all cases. Figure 11 shows an island in the sea that certainly
cannot be properly colored with less than four colors, since it contains
four countries, each of which touches the other three.

The fact that no map has yet been found whose coloring requires more
than four colors suggests the following mathematical theorem: For any
subdivision of the plane into non-overlapping regions, it is always possible
to mark the regions with one of the numbers 1, 2, 3, 4 in such a way
that no two adjacent regions receive the same number. By “adjacent”
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regions we mean regions with a whole segment of boundary in common;
two regions which meet at a single point only or at a finite number of
points (such as the states of Colorado and Arizona) will not be called
adjacent, since no confusion would arise if they were colored with the
same color.

The problem of proving this theorem seems to have been first proposed
by Moebius in 1840, later by DeMorgan in 1850, and again by Cayley in
1878. A “proof” was published by Kempe in 1879, but in 1890 Heawood
found an error in Kempe’s reasoning. By a revision of Kempe's proof,
Heawood was able to show that five colors are always sufficient. Despite
the efforts of many famous mathematicians, the matter essentially rests
with this more modest result: It has been proved that five colors suffice
for all maps and it is conjectured that four will likewise suffice. But, as
in the case of the famous Fermat theorem neither a proof of this conjec-
ture nor an example contradicting it has been produced, and it remains
one of the great unsolved problems in mathematics. The four color theo-
rem has indeed been proved for all maps containing less than thirty-eight
regions. In view of this fact it appears that even if the general theorem is
false it cannot be disproved by any very simple example.

In the four color problem the maps may be drawn either in the plane
or on the surface of a sphere. The two cases are equivalent: any map on
the sphere may be represented on the plane by boring a small hole through
the interior of one of the regions 4 and deforming the resulting surface
until it is flat, as in the proof of Euler’s theorem. The resulting map in the
plane will be that of an “island” consisting of the remaining regions,
surrounded by a “sea” consisting of the region 4. Conversely, by a re-
versal of this process, any map in the plane may be represented on the
sphere. We may therefore confine ourselves to maps on the sphere. Fur-
thermore, since deformations of the regions and their boundary lines do
not affect the problem, we may suppose that the boundary of each region
is a simple closed polygon composed of circular arcs. Even thus “regular-
ized,” the problem remains unsolved; the difficulties here, unlike those
involved in the Jordan curve theorem, do not reside in the generality of
the concepts of region and curve.

A remarkable fact connected with the four color problem is that for
surfaces more complicated than the plane or the sphere the corresponding
theorems have actually been proved, so that, paradoxically enough, the
analysis of more complicated geometrical surfaces appears in this respect
to be easier than that of the simplest cases. For example, on the surface
of a torus (see Figure 5), whose shape is that of a doughnut or an inflated
inner tube, it has been shown that any map may be colored by using
seven colors, while maps may be constructed containing seven regions,
each of which touches the other six.
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KNOTS

As a final example it may be pointed out that the study of knots pre-
sents difficult mathematical problems of a topological character. A knot
is formed by first looping and interlacing a piece of string and then joining
the ends together. The resulting closed curve represents a geometrical
figure that remains essentially the same even if it is deformed by pulling
or twisting without breaking the string. But how is it possible to give an
intrinsic characterization that will distinguish a knotted closed curve in
space from an unknotted curve such as the circle? The answer is by no
means simple, and still less so is the complete mathematical analysis of
the various kinds of knots and the differences between them. Even for
the simplest case this has proved to be a sizable task. Consider the two
trefoil knots shown in Figure 12. These two knots are completely symmet-
rical “mirror images” of one another, and are topologically equivalent,
but they are not congruent. The problem arises whether it is possible to
deform one of these knots into the other in a continuous way. The answer
is in the negative, but the proof of this fact requires considerably more

knowledge of the technique of topology and group theory than can be
presented here.

FIGURE 12—Topologically equivalent knots that are not deformable into one another.

THE TOPOLOGICAL CLASSIFICATION OF SURFACES
THE GENUS OF A SURFACE

Many simple but important topological facts arise in the study of two-
dimensional surfaces. For example, let us compare the surface of a sphere
.With that of a torus. It is clear from Figure 13 that the two surfaces differ
in a fundamental way: on the sphere, as in the plane, every simple closed
curve such as C separates the surface into two parts. But on the torus
there exist closed curves such as C’ that do not separate the surface into
two parts. To say that C separates the sphere into two parts means that if
tl?e sphere is cut along C it will fall into two distinct and unconnected
pieces, or, what amounts to the same thing, that we can find two points
o the sphere such that any curve on the sphere which joins them must
Intersect C. On the other hand, if the torus is cut along the closed curve

Topology 593

FIGURE 13—Cuts on sphere and torus.

C’, the resulting surface still hangs together: any point of the surface can
be joined to any other point by a curve that does not intersect C". This
difference between the sphere and the torus marks the two types of sur-
faces as topologically distinct, and shows that it is impossible to deform
one into the other in a continuous way.

Next let us consider the surface with two holes shown in Figure 14.
On this surface we can draw two non-intersecting closed curves 4 and B
which do not separate the surface. The torus is always separated into two
parts by any two such curves. On the other hand, three closed non-
intersecting curves always separate the surface with two holes.

FIGURE 14—A surface of genus 2.

These facts suggest that we define the genus of a surface as the largest
number of non-intersecting simple closed curves that can be drawn on
the surface without separating it. The genus of the sphere is 0, that of the
torus is 1, while that of the surface in Figure 14 is 2. A similar surface
with p holes has the genus p. The genus is a topological property of.a
surface and remains the same if the surface is deformed. Conversely, it
may be shown (we omit the proof) that if two closed surfaces have the
same genus, then one may be deformed into the other, so that the genus
p=0,1,2, ... of aclosed surface characterizes it completely from the
topological point of view. (We are assuming that the surfaces consid-
ered are ordinary “two-sided” closed surfaces. Later in this section we
shall consider “one-sided” surfaces.) For example, the two-holed dough-
nut and the sphere with two “handles” of Figure 15 are both closed
surfaces of genus 2, and it is clear that either of these surfaces may be
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FIGURE 15—Surfaces of genus 2.

continuously deformed into the other. Since the doughnut with p holes,
or its equivalent, the sphere with p handles, is of genus p, we may take
either of these surfaces as the topological representative of all closed
surfaces of genus p.

THE EULER CHARACTERISTIC OF A SURFACE

Suppose that a closed surface § of genus p is divided into a number of
regions by marking a number of vertices on § and joining them by curved
arcs. We shall show that

(1) V—-—E+F=2-—2p,

where ¥V = number of vertices, E = number of arcs, and F = number of
regions. The number 2 — 2p is called the Euler characteristic of the sur-
face. We have already seen that for the sphere, ¥V — E + F = 2, which
agrees with (1), since p = 0 for the sphere.

To prove the general formula (1), we may assume that S is a sphere
with p handles. For, as we have stated, any surface of genus p may be
continuously deformed into such a surface, and during this deformation
the numbers V — E + F and 2 — 2p will not change. We shall choose the
deformation so as to ensure that the closed curves 4,, 4,, B;, B, .
where the handles join the sphere consist of arcs of the given subdivision.
(We refer to Figure 16, which illustrates the proof for the case p =2.)

FIGURE 16

Now let us cut the surface S along the curves A., B., . . . and
straighten the handles out. Each handle will have a free edge bounded
by a new curve 4%, B*, . . . with the same number of vertices and arcs
as Ay, B, . . . respectively. Hence V — E + F will not change, since
the additional vertices exactly counterbalance the additional arcs, while
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no new regions are created. Next, we deform the surface by flattening out
the projecting handles, until the resulting surface is simply a sphere from
which 2p regions have been removed. Since V — E + F is known to equal
2 for any subdivision of the whole sphere, we have

V—E+F=2-2p

for the sphere with 2p regions removed, and hence for the original sphere
with p handles, as was to be proved.

Figure 3 illustrates the application of formula (1) to a surface § con-
sisting of flat polygons. This surface may be continuously deformed into
a torus, so that the genus p is 1 and 2 —2p =2 — 2 = 0. As predicted
by formula (1),

V—E+F=16—-32416=0.
ONE-SIDED SURFACES

An ordinary surface has two sides. This applies both to closed surfaces
like the sphere or the torus and to surfaces with boundary curves, such
as the disk or a torus from which a piece has been removed. The two
sides of such a surface could be painted with different colors to distin-
guish them. If the surface is closed, the two colors never meet. If the
surface has boundary curves, the two colors meet only along these curves.
A bug crawling along such a surface and prevented from crossing bound-
ary curves, if any exist, would always remain on the same side.

Moebius made the surprising discovery that there are surfaces with
only one side. The simplest such surface is the so-called Moebius strip,
formed by taking a long rectangular strip of paper and pasting its two
ends together after giving one a half-twist, as in Figure 17. A bug crawling
along this surface, keeping always to the middle of the strip, will return
to its original position upside down (Figure 18). Anyone who contracts
to paint one side of a Moebius strip could do it just as well by dipping the
whole strip into a bucket of paint.

Another curious property of the Moebius strip is that it has only one
edge, for its boundary consists of a single closed curve. The ordinary two-
sided surface formed by pasting together the two ends of a rectangle
without twisting has two distinct boundary curves. If the latter strip is
cut along the center line it falls apart into two different strips of the same
kind. But if the Moebius strip is cut along this line (shown in Figure 17)
we find that it remains in one piece. It is rare for anyone not familiar with
the Moebius strip to predict this behavior, so contrary to one’s intuition
of what “should” occur. If the surface that results from cutting the
Moebius strip along the middle is again cut along its middle, two separate
but intertwined strips are formed.
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FIGURE 17—Forming a Moebius strip.
It is fascinating to play with such strips by cutting them along lines
parallel to a boundary curve and %, %, etc. of the distance across. The

Moebius strip certainly deserves a place in elementary geometrical
instruction.

FIGURE 18—Reversal of up and down on uaversing a Moebius strip.
The boundary of a Moebius strip is a simple and unknotted closed

curve, and it is possible to deform it into a circle. During the deformation,
however, the strip must be allowed to intersect itself. (Hence, such a
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FIGURE 19—Crosscap.

deformation of a “real” paper Moebius strip is only possible in the imag-
ination.) The resulting self-intersecting and one-sided surface is known
as a cross-cap (Figure 19). The line of intersection RS is regarded as two
different lines, each belonging to one of the two portions of the surface
which intersect there. The one-sidedness of the Moebius strip is preserved
because this property is topological; a one-sided surface cannot be con-
tinuously deformed into a two-sided surface.

Another interesting one-sided surface is the “Klein bottle.” This surface
is closed, but it has no inside or outside. It is topologically equivalent to
a pair of cross-caps with their boundaries coinciding.

FIGURE 20—Klein bottle.

It may be shown that any closed, one-sided surface of genus p =1, 2,
. is topologically equivalent to a sphere from which p disks have
been removed and replaced by cross-caps. From this it easily follows that

the Euler characteristic V — E 4 F of such a surface is related to p by the
equation

V—E+F=2—p.

The proof is analogous to that for two-sided surfaces. First we show
that the Euler characteristic of a cross-cap or Moebius strip is 0. To do
this we observe that, by cutting across a Moebius strip which has been
subdivided into a number of regions, we obtain a rectangle that contains
lwo more vertices, one more edge, and the same number of regions as the
Moebius strip. For the rectangle, ¥V — E + F = 1, as we proved on pages
581-582. Hence for the Moebius strip ¥ — E + F = 0. As an exercise, the
reader may complete the proof.
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It is considerably simpler to study the topological nature of surfaces
such as these by means of plane polygons with certain pairs of edges
conceptually identified. In the diagrams of Figure 21, parallel arrows are
to be brought into coincidence—actual or conceptual—in position and
direction.

This method of identification may also be used to define three-dimen-
sional closed manifolds, analogous to the two-dimensional closed surfaces.
For example, if we identify corresponding points of opposite faces of a

A A A A
B A A
CYUNDER TORUS
A » A A
B A A A
MOEBIUS STRIP KLEIN BOTTLE

FIGURE 21—Closed surfaces defined by codrdination of edges in plane figure.
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FIGURE 22—Three-dimensional torus defined by boundary identification.
cube (Figure 22), we obtain a closed, three-dimensional manifold called
the three-dimensional torus. This manifold is topologically equivalent to
the space between two concentric torus surfaces, one inside the other, in
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which corresponding points of the two torus surfaces are identified (Figure
23). For the latter manifold is obtained from the cube if two pairs of
conceptually identified faces are brought together.

FIGURE 23—Another represeniation of three-dimensional lorus. (Figure cut to show identification.)



