MATHEMATICAL GAMES

Diversions that clarify group theory,

particularly by the weaving of braids

by Martin Gardner

he concept of “group,” one of the
I great unifying ideas of modern
algebra and an indispensable tool
in physics, has been likened by James R.
Newman to the grin of the Cheshire cat.
The body of the cat (algebra as tradi-
tionally taught) vanishes, leaving only
an abstract grin. A grin implies some-
thing amusing. Perhaps we can make
group theory less mysterious if we do
not take it too seriously.

Three computer programmers—Ames,
Baker and Coombs—wish to decide who
pays for the beer. Of course they can
flip pennies, but they prefer a random
decision based on the following network-
tracing game. Three vertical lines are
drawn on a sheet of paper. One pro-
grammer, holding the paper so that his
friends cannot see what he is doing,
randomly labels the lines A, B and C
[see illustration at left below]. He folds
back the top of the sheet to conceal these
letters. A second player now draws a
series of random horizontal lines—call
them shuttles—each connecting two of
the vertical lines [see second illustration
below]. The third player adds a few
more shuttles, then marks an X at the

bottom of one of the vertical lines [see
third illustration].

The paper is unfolded. Ames puts his
finger on the top of line A and traces it
downward. When he reaches the end of
a shuttle he turns, follows the shuttle to
its other end, turns again and continues
downward until he reaches the end of
another shuttle. He keeps doing this until
he reaches the bottom. His path [traced
in color in the fourth illustration] does
not end on the X, so he does not have to
buy the drinks. Baker and Coombs now
trace their lines in similar fashion.
Baker’s path ends on the X, so he picks
up the tab. For any number of vertical
lines, and regardless of how the shuttles
are drawn, each player will always end
on a different line.

A closer look at this game discloses
that it is based on one of the simplest of
groups, the so-called permutation group
for three symbols. What, precisely, is a
group? It is an abstract structure involv-
ing a set of undefined elements (a, b, ¢
.. .) and a single undefined operation
(here symbolized by . ) that pairs one
element with another to produce a
third. The structure is not a group un-
less it has the following four traits:

1. When two elements of the set are
combined by the operation, the result is
another element in the same set. This is
called “closure.”

2. The operation obeys the “associa-
tive law”: (a.b).c = a.(b.c)

3. There is one element e (called the
“identity”) such thata.e = e.a = a

4. For every element a there is an in-
verse element @’ such that a.a’ = a’.a = ¢

If in addition to these four traits the
operation also obeys the commutative
law (a.b = b.a), the group is called a
commutative or Abelian group.

The most familiar example of a group
is provided by the integers with respect
to the operation of addition. It has clo-
sure (any integer plus any integer is an
integer). It is associative (adding 2 to 3
and then adding 4 is the same as adding
2 to the sum of 3 and 4). The identity
is 0 and the inverse of a positive integer
is the negative of that integer. It is an
Abelian group (2 plus 3 is the same as
3 plus 2). The integers also form an
Abelian group with respect to multiplica-
tion, but here the identity is 1 and the
inverse of an integer is its reciprocal
(e.g., the inverse of 5 is 1/5). The in-
tegers do not form a group with respect
to division: 5 divided by 2 is 2%, which
is not an element in the set.

Let us see how the network game ex-
hibits group structure. The top illustra-
tion on page 169 depicts the six basic
“transformations” that are the elements
of our finite group. Transformation p
switches the paths of A and B so that
the three paths end in the order BAC.
Transformations ¢, r, s and t give other
permutations. Transformation e is not
much of a change; it consists of drawing
no shuttles at all. These six elements cor-
respond to the six different ways in which
three symbols can be permuted. Our
group operation, symbolized by . , is
simply that of following one transforma-
tion with another; that is, of adding
shuttles.

A quick check reveals that we have
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The network-tracing game
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The six elements of the network-game group
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here a structure with all the properties
of a group. It has closure because no
matter how we pair the elements we
always get a permutation in the order
of the paths that can be achieved by one
element alone. For example, p.t = r be-
cause p followed by t has exactly the
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Results of pairing elements in the network-game group. Broken line indicates r .

same effect on the path order as apply-
ing r alone. The operation of adding
shuttles is clearly associative. Adding
no shuttles is the identity. Elements p,
q and r are their own inverses, and s
and t are inverses of each other. (When
an element and its inverse are combined,
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The GR-H3 rate gyro in this
application weighs less than
four ounces, has 0.5%, linearity
to half range, 29, to full range.

Constant-damped, the GR-H3
requires no heaters, can be
supplied with compensated
damping from —65°F

to +210°F.

GR-H3 units on test exceed
10,000 hours life at 150°F

ambient, 7000 hours at 200°F
ambient.

If you need gyros

of proven reliability,

write

American-Standard*, Military
Products Division, Norwood,
Massachusetts.

ETY Sandard and S ‘4®"e 1 ks of

American Radiacor & Standard Sanitary Corporation.

: AmEerican-Drandard
s=p MILITARY PRODUCTS DIVISION
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THERMAL AND CHEMICAL STABILITY as well
as dielectric properties make 3M Brand
Fluorochemical FC-75 and FC-43 right
for use in the Hughes Power Amplifier.
FC-75 has a useful liquid range of —150°F.
to 4+212°F. at atmospheric pressure, with
a viscosity of 16 Centistokes at —90°F.
In addition, it offers these other useful
properties: high dielectric strength in both
liquid and vapor state (37 KV 0.1” gap
for liquid) . . . self-healing in high voltage
electrical equipment . . . excellent wetting
power . . . compatible with materials com-
monly used in the construction of high
temperature equipment . . . thermally
stable to temperatures in excess of 750°F.
and, even under extreme use conditions,
does not form sludge or corrosive products.
Heat capacities in liquid and vapor state
are approximately equal.

FC-75 COOLED!

3M CHEMICAL DIVISION, MANUFACTURERS OF :

e ACIDS

o RESINS

o ELASTOMERS

o PLASTICS

o OILS, WAXES AND GREASES

o DISPERSION COATINGS

o FUNCTIONAL FLUOROCHEMICALS
o SURFACTANTS

o AND INERT LIQUIDS

' the result is the same as drawing no

shuttles at all.) It is not an Abelian
group (e.g., p followed by g is not the
same as ¢ followed by p).

The bottom illustration on page 169
provides a complete description of this
group’s structure. What is the result of
following r with s? We find r on the left
side of the table and s at the top. The
intersection of column and row is the
cell labeled p. In other words, shuttle
pattern r followed by shuttle pattern s
has the same effect on path order as
pattern p. This is a very elementary
group that turns up in many places. For
example, if we label the corners of an
equilateral triangle, then rotate and re-
flect the triangle so that it always occu-
pies the same position on the plane, we
find that there are only six basic trans-
formations possible. These transforma-
tions have the same structure as the
group just described.

It is not necessary to go into group
theory to see intuitively that the network
game will never permit two players to
end their paths on the same vertical line.
Simply think of the three lines as three
ropes. Each shuttle has the same effect
on path order as crossing two ropes, as
though forming a braid. Obviously no
matter how you make the braid or how
long it is, there will always be three sepa-
rate lower ends.

Let us imagine that we are braiding
three strands of a girl's hair. We can re-
cord successive permutations of strands
by means of the network diagram, but
it will not show how the strands pass over
and under one another. If we take into
account this complicating topological
factor, is it still possible to call on group
theory for a description of what we are
doing? The answer is yes, and Emil
Artin, a distinguished mathematician
now at the University of Hamburg, was
the first to prove it. In his elegant theory
of braids the elements of the group are
“weaving patterns” (infinite in num-
ber), and the operation consists, as in
the network game, of following one pat-
tern with another. As before, the identity
element is a pattern of straight strands—
the result of doing nothing. The inverse
of a weaving pattern is its mirror image.
The illustration at right shows a sample
pattern followed by its inverse. Group
theory tells us that when an element is
added to its inverse, the result is the
identity. Sure enough, the two weaving
patterns combined prove to be topo-
logically equivalent to the identity. A
tug on the end of the braid in the illus-
tration and all strands pull out straight.
(Many magic tricks with rope, known
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Eastman 910 Adhesive
solves another
design bottleneck

Directly measuring dimensional
changes in structural members under
stress, strain gages provide aircraft de-
signers with performance data at al-
most any point in the airframe during
flight testing. As many as 8,000 gages
have been used during the flight test-
ing program of a single aircraft.

Because of its rapid setting charac-
teristics and its ability to adhere to vir-
tually any material, Eastman 910
Adhesive has become the preferred ad-
hesive for attaching strain gages.

Conventional adhesives require up
to 24 hours curing time before reliable
readings can be taken. Use of Eastman
910 Adhesive can reduce this waiting
period to less than 5 minutes.

Eastman 910 Adhesive is making
possible faster, more economical as-
sembly-line operations and new design
approaches for many products. It is
ideal where extreme speed of setting is
important, or where design require-
ments involve joining small surfaces,
complex mechanical fasteners or heat-
sensitive elements.

Eastman 910 Adhesive is simple to
use. No mixing, heat or pressure is re-
quired. Upon spreading into a thin film
between two surfaces, setting begins
immediately. With most materials,
strong bonds are made in minutes.

What production or design problem
can this unique adhesive solve for you?

Bonds Almost Instantly
...Without Heat,
Pressure or Catalyst

For a trial quantity (Y5-0z.) send five dol-
lars to Armstrong Cork Co., Industrial
Adhesives Div., 9112 Inland Road, Lan-
caster, Pa., or to Eastman Chemical Prod-
ucts, Inc., Chemicals Div., Dept. 5-12,
Kingsport, Tenn. (Not for drug use)
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in the trade as releases, are based on this
interesting property of groups.) Artin’s
theory of braids not only provided for
the first time a system that classified all
types of braids; it also furnished a
method by which one could determine
whether two Weaving patterns, no mat-
ter how Complex, were or were not topo-
logically equivalent.

Braid theory is involved in an unusual
game devised by Piet Hein of Copen-
hagen, several of whose mathematical
recreations have been discussed in this
department. Cut a piece of heavy card-
board into the coat-of-arms shape de-
picted below. This will be called the
plaque. Its two sides must be easily dis-
tinguished, so color one side or mark it
with an X as shown. Punch three holes
at the square end. A two-foot length of
heavy but flexible cord (sash cord is
excellent) is knotted to each hole. The
other ends of the three strands are at-
tached to some fixed object like the back
of a chair.

You will find that the plaque can be
given complete rotations in six different
ways to form six different braids. It can
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be rotated sidewise to the right or to the
left; it can be rotated forward or back-
ward between strands A and B; it can
be rotated forward or backward between
strands B and C. The second illustration
below shows the braid obtained by a
forward rotation through B and C. The
question arises: Is it possible to untangle
this braid by weaving the plaque in and
out through the strands, keeping it hori-
zontal at all times, X-side up, and always
pointing toward you? The answer is no.
But if you give the plaque a second rota-
tion, in any of the six different ways, the
result is a braid that can be untangled by
weaving the plaque without rotating it.

To make this clear, assume that the
second rotation is forward between A
and B, creating the braid shown in the
third illustration. To remove this braid
without rotating the plaque, first raise
C at the spot marked Y and pass the
plaque under it from right to left. Pull
the strings taut. Next raise A at the spot
marked Z and pass the plaque under it
from left to right. The result is that the
cords pull straight.

The following surprising theorem
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Rotation at left produces braid in center; rotation in center, braid at right
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Aluminum wave guide

components, large and small,

are cast smooth, sound and

accurate by the unusual

foundry methods of Morris

Bean & Company, Yellow

Springs 5, Ohio

aluminum

holds for any number of strands above
two. All braids produced by an even
number of rotations (each rotation may
be in any direction whatever) can always
be untangled by weaving the plaque
without rotating it; braids produced by
an odd number of full rotations can
never be untangled.

It was at a meeting in Niels Bohr’s
Institute for Theoretical Physics, more
than 25 years ago, that Hein first heard
this theorem discussed by Paul Ehren-
fest in connection with a problem in
quantum theory. A demonstration was
worked out, by Hein and others, in which
Mrs. Bohr’s scissors were fastened to the
back of a chair with strands of cord. It
later occurred to Hein that the rotating
body and the surrounding universe en-
tered symmetrically into the problem
and therefore that a symmetrical model
could be created simply by attaching a
plaque to both ends of the cord. With
this model two persons can play a topo-
logical game. Each holds a plaque, and
the three strands are stretched straight
between the two plaques. The players

take turns, one forming a braid and the
other untangling it, timing the operation
to see how long it takes. The player who
untangles the fastest is the winner.

The odd-even theorem also applies to
this two-person game. Beginners should
limit themselves to two-rotation braids,
then proceed to higher even-order braids
as they develop skill. Hein calls his game
“tangloids,” and it has been played in
Europe for a number of years.

Why do odd and even rotations make
such a difference? This is a puzzling
question that is difficult to answer with-
out going more deeply into group theory.
A hint is supplied by the fact that two
rotations in exactly opposite directions
naturally amount to no rotation. And if
two rotations are almost opposite, pre-
vented from being so only by the way
certain strings pass around the plaque,
then the tangle can be untangled by
moving those same strings back around
the plaque. M. H. A. Newman, in an
article published in a London mathe-
matical journal in 1942, says that P. A. M.
Dirac, the noted University of Cam-
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| Three problems of braid disentanglement
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320°F?

“Malfunction” is the most feared word
a rocket scientist can hear. One of its
most critical sources is temperature.
Ranging from hundreds below zero to
thousands above, temperature extremes
can play havoc with milli-second per-
formance specifications of complex valves
and pumping systems.

In picture left, liquid nitrogen flowing
through a turbo pump valve of a type
used on the powerplant for the Air
Force’s X-15drops the temperature within
the valve to minus 320°F. This is slightly
cooler than in actual operation, when the
valve will pump highly combustible liquid
oxygen (minus 297°F) and ammonia.

Laboratory tests are an essential part
of the continuing research program in
new materials, new design and new fuels,
carried on by THIOKOL’s rocket builders.
In close support are the scientists of
THIOKOL’s Chemical Division, who con-
tinually seek new properties for their
liquid polymers to meet increasing per=
formance demands.

It is through such scientific team effort
that THIOKOL has been able to design
and build liquid and solid rocket propul-
sion systems having a remarkable record
for flawless functioning.

To become a THIOKOL scientist is to
enter today’s most fascinating industrial
arena. Challenging assignments exist for
research chemists in:

Propellant Analysis; Propellant Formula-
tion; Organic and Inorganic Polymers;
Fluorine and Metal Hydrides Synthesis;
High Vacuum Techniques; Fast Reaction
Kinetics; Shock Wave Phenomena; Com-
bustion Processes.

For engineers, there are scores of
exciting career opportunities in the areas
of servo system and electro mechanical
design, ininstrumentation and many other
phases of advanced propulsion research.

THIOKOL plants are located in areas
that are good places to live—Bristol,
Pennsylvania; Elkton, Maryland; Hunts-
ville, Alabama; Marshall, Texas; Denville,
New Jersey; Trenton, New Jersey;
Brigham City, Utah; Moss Point, Miss.
For further information contact: Person-
nel Director at any plant address above.

Thiokol.

is Research to the Core

THIOKOL CHEMICAL CORPORATION
Bristol, Pennsylvania

®Registered trademark of the Thiokol Chemical Corp. for
its rocket propellants, liquid polymers, plasticizers and
other chemical products.
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Solution to last month’s card problem

bridge physicist, has for many years used
the solitaire form of this game as a model
“to illustrate the fact that the funda-
mental group of the group of rotations
in 3-space has a single generator of the
period 2. Newman then draws on
Artin’s braid theory to prove that the
cords cannot be untangled when the
number of rotations is odd.

You will find it a fascinating pastime
to form braids by randomly rotating the
plaque an even number of times, then
seeing how quickly you can untangle the
cords. Three simple braids, each formed
by two rotations, are shown in the illus-
tration on page 174. The braid on the
left is formed by rotating the plaque
forward twice through B and C; the
braid in center, by rotating the plaque
forward through B and C and then back-
ward through A and B; the braid at right,
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by two sidewise rotations to the right.
Readers are invited to determine the best
method of untangling each braid. An-
swers will be given in the next issue.

Following a practice inaugurated last
December, I close with a cryptic Yule-
tide message. To find it, you must per-
mute properly all the letters (that is,
form an anagram) of the following
sentence: MANY A SAD HEART CAN WHIS-
PER MY PRAYER.

Unfortunately permutation group the-
ory is of no help here, but the puzzle is
not nearly so hard as it looks.

Bst month readers were asked to form

a square with the 16 highest play-
ing cards so that no value or suit would
appear twice in any row, column or two
main diagonals. One solution is given
in the illustration above.
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